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Abstract
Bringing input-output based techniques for environmental research to a broader audience requires better understanding and communication of the uncertainty associated with their results.  Here we discuss uncertainties in input-output life cycle assessment models based on our experience in developing the Mixed-Unit Input-Output Life Cycle Assessment (MUIO-LCA) model for the US economy.  The MUIO-LCA model extends the 500 sector 1997 US Benchmark make and use tables through the addition of commodities and industries to represent the flow of cadmium, lead, nickel, and zinc in mass units.  These sectors allow explicit tracking of material flows and for the calculation of pollutant releases based on physical quantities rather than dollar values.  Uncertainties in the US Geological Survey data used to create these accounts are discussed.  The effect of level of aggregation on the usefulness and uncertainty of IO-LCA models is presented in the context of MUIO-LCA.  Guidance relating to uncertainty associated with the assumption of a US technology mix for imported metals is also provided.  Uncertainty in toxic release multipliers based on the US EPA Toxics Release Inventory is presented as well as a discussion of the treatment of uncertainty for a set of material use multipliers based on US Geological Survey data.  Our experience with uncertainty in the development of the MUIO-LCA model provides guidance for the interpretation of IO-LCA model results and for improved treatment of uncertainty in the next generation of IO-LCA models. 
Introduction
Input-output techniques are increasingly used for environmental policy analysis and environmental life cycle assessment.  Researchers are realizing the benefit of IO models in simplifying the analysis of supply chains and reducing the truncation error associated with process-based analysis.  Improving the robustness of the results of IO based environmental assessments requires improving our understanding of model uncertainty.  We offer an assessment of the uncertainties associated with IO models for environmental assessment based on our experience developing the Mixed-Unit Input-Output Life Cycle Assessment (MUIO-LCA) model.  
Like the EIO-LCA model, also developed through the Green Design Institute at Carnegie Mellon University, the MUIO-LCA model is based on the US Benchmark IO Accounts combined with additional data related to releases of pollutants, energy consumption, and material use.  MUIO-LCA extends the capability of EIO-LCA by adding commodities and industries related to cadmium, lead, nickel, and zinc flows.  Metal output of these sectors are tracked in mass units.  The inclusion of additional sectors allows for explicit tracking of material flows and calculation of metal use.  Like EIO-LCA, MUIO-LCA allows for the calculation of pollutant releases and energy use throughout the complete supply chain of an industry. 
Model predictions are never certain.  Understanding uncertainty in a model is important to interpreting its results.  This becomes especially important if the outcomes to be compared are near one another in magnitude.  Interpreting the results of an IO-LCA model is especially tricky due to the large amounts of data and many assumptions on which the results are based.  The common guidance given to those interpreting results of EIO-LCA has been that they should be considered within an order of magnitude of the true values.  Throughout development of the MUIO-LCA model we have attempted to track the assumptions, errors, and uncertainties involved in the model.  Here we will use this experience to provide guidance related to the uncertainty of MUIO-LCA.  Our discussion also highlights uncertainties in EIO-LCA and the 1997 US Benchmark Accounts on which MUIO-LCA is based.
In Table 1 we present an overview of sources of error in IO LCA models presented in no particular order.  We provide brief descriptions of the first 7 types of error in the section that follows.  The final three types of error are described in more detail with specific attention to the MUIO-LCA model.

Several sources of error in IO LCA models have been illustrated in previously published works.  It is not our desire to provide a comprehensive discussion here.  Rather we will focus on instances where our experience provides unique insights.  Lenzen ('01) provides a more comprehensive discussion of error in IO LCA models to which the reader can refer.  

Uncertainty in IO-LCA

Source Data Uncertainty

Source data uncertainty refers to uncertainty in the underlying data on which the make and use tables are based.  In the case of the 1997 Benchmark Account statistical techniques are applied to a large amount of data from the Economic Census, Foreign Trade Database, and Commodity Flow Survey to estimate the entries in the make and use tables.  Responses to the Economic Census are not always accurate.  Although adjustments are made to account for this, some amount of uncertainty propagates through the model.  Uncertainty is also introduced by sampling, estimations, and data manipulation.  
Estimation of Transactions

Estimation of transactions refers to uncertainty introduced by the estimation of make and use table entries.  This uncertainty is strongly related to source data.  In cases where source data is very limited, simplifying assumptions must be made to allow the estimation of inter-industry transactions.  Entries in the 1997 US Benchmark make and use tables are also adjusted to reallocate production of some secondary products to their primary industry and to balance the total outputs of the make and use tables.  Commodity production and consumption are reallocated from to reduce the amount of secondary products produced by industries.  Production of certain commodities is moved to the primary industry and the consumption mix is adjusted accordingly.  Tables are balanced by adjusting the entries until the total industry output and total commodity output calculated as the sums of rows and columns of the make and use tables balance.  These quantities often do not match initially due to misreported, erroneous, or missing data as well as the time lag between the purchase of inputs and the production of goods.  Balancing was performed by the BEA based on expert opinion and comparison to the 1992 account.  Remaining differences are corrected by adjusting entries in other value added (Lawson '02).  
Proportionality Assumption

IO models estimate supply chain affects under an assumption of proportionality.  Large-scale changes which effect availability of supply, augmentation of infrastructure, or prices are not well represented in typical IO models described here.  Generally the impact of large-scale changes is underestimated by IO-LCA models.

Cradle-to-Gate Truncation

IO-LCA models capture only cradle to gate impacts of a product.  That is the impact occurring from material extraction through manufacturing to the point of sale.  Additional information is needed to estimate the use and end-of-life phases of the product life cycle.  This should not introduce uncertainty into results as long as the user understands the proper use of the model.  Often however, IO model results are misrepresented as the entire impact of a product.
Changes in Technology or Production Mix Over Time

Changes in technology or production mix over time are often not well characterized by IO-LCA accounts which represent a snapshot of an economy.  All of the data used are from a specific point in time, 1997 in the case of the 1997 US Benchmark Accounts.  Changes affecting the technology structure occur even over a one year time period.  Beyond this, the results of IO models are often extrapolated to represent future years.  The US Economic Census is performed every 5 years.  The US BEA requires another 5 years to construct the make and use tables.  Thus the most recent model available is often based on data from 5 to 10 years earlier.  Properly interpreting model predictions of the consequences of current decisions should involve consideration of the influence of changes in the economy over the past 5-10 years on model predictions.

Model Input Uncertainty

Users of the EIO-LCA model are often interested in the production of a certain amount of a good such as a barrel of oil, a lead-acid battery, or an automobile.  Using the model requires transforming the functional unit to a dollar amount of final demand in the most closely related sector.  Inputs must also be adjusted to reflect producer’s prices for goods(UNDESA '99).  Margins and delivery costs should be input to the model as final demands for  retail trade (4A0000), wholesale trade (420000), truck transportation (484000), rail transportation (482000), water transportation (483000), air transportation (481000), etc.  All final demand inputs must also be inflated or deflated to reflect 1997 dollars.
Generally model users are more familiar with the values of goods in current purchaser’s prices.  Developers of IO LCA models should take this into consideration when designing their user interface and documentation.  Ideally users would be prompted with information about how the model input should be determined.  Consumer price indices (CPI) are available for inflating/deflating prices to 1997 dollars, however the calculation of CPI itself introduces error.  Adjusting a final demand in purchaser price to reflect producer price, margins, and delivery can be done with the use of a transformation matrix based on the average margins for a commodity.  The purchaser-producer price transformation matrix can be calculated using information provided in the US Benchmark Accounts based on intermediate or final demand.
Uncertainty in price and the transformation to 1997 dollars can have a significant impact on the model results.  For example, the average price of an automobile in the US in 2003 was roughly 15% greater than the price in 1997.  The difference between purchaser and producer price of an average automobile is also roughly 15% (Hawkins '07).  Price uncertainty is reduced somewhat in the MUIO-LCA model as users can input quantities in terms of physical units for cadmium, lead, nickel, and zinc commodities.  Nonetheless, there is uncertainty associated with the prices used to create the MUIO-LCA model.
[Table 1] 
Experience with MUIO-LCA

Aggregation

Limited availability of data and concerns about the release of proprietary information require even the most detailed IO models to include firms of various sizes utilizing different processes or technology mixes in the same sector.  Often sectoral aggregation limits our results to the average of the products or processes lumped into the most closely matching category rather than allowing for calculation of the supply chain impacts of the specific process we are interested in.
The current EIO-LCA model utilizes detailed IO accounts consisting of roughly 500 sectors to calculate the economic and environmental impacts associated with changes in consumer choices 
 ADDIN EN.CITE 
(Hendrickson '98, '06, Lave '95)
.  Even at this level of detail there are important questions for which the model cannot provide clear guidance.  For example, economic transactions and material flows related to the refining of a number of metals are aggregated together in the primary nonferrous metal, except copper and aluminum sector.  Measuring and controlling the environmental release of the individual metals included in this sector requires the use of a model that distinguishes between them.  For this reason a series of individual sectors for cadmium, lead, nickel, and zinc have been created in the MUIO-LCA model to allow flows of these materials to be tracked explicitly.

An important question posed when we began disaggregating the EIO-LCA model to create the MUIO-LCA model was what level of detail is best for a MUIO model? Of course the answer to this question depends on what the researcher hopes to accomplish.  Adding sectors to a model requires a large number of additional data points.  As the model increases in size the data requirements for additional sectors rapidly increase.  

Many LCA studies require comparing technologies or processes which can be tough to tease out of the EIO-LCA model.  In this case, increasing the level of detail increases the value of the model.  However, there is a cost associated with increasing detail.  The data required for disaggregating sectors are often not available or have a high degree of uncertainty.  In the absence of data, simplifying assumptions must be made.  Figure 1 is an attempt to represent the relationship between level of model detail and uncertainty in an IO LCA model.  In a model with fewer sectors it isn’t always possible to obtain results specific to the product or process of interest and so average values are used.  This causes uncertainty associated with lack of model resolution.  Although this uncertainty decreases as sectors are added, uncertainty from the data used to disaggregate the model is introduced.  Our goal is to provide the level of detail which results in minimum overall uncertainty for the most important environmental analyses.
[Figure 1]
This depiction is a generalization.  The optimal level of detail and acceptable level of uncertainty depends on the question being asked.  The MUIO-LCA model provides details pertinent to questions related to the use of cadmium, lead, nickel, and zinc.  Other work to increase the resolution of the construction (Sharrard '07) and electrical utilities sectors (Marriott '07) is underway.  

The limiting factor in an IO model is almost always the availability of data.  In the MUIO-LCA model 46 commodities and 20 industries were added to describe the flows of cadmium, lead, nickel, and zinc.  Although increasing the level of detail by this amount surely increased uncertainty, the new model is capable of addressing issues that simply could not be modeled with the 1997 US Benchmark Model.  

It was necessary to make several approximations in the development of the MUIO-LCA model.  The model is constructed such that physical flows of materials are consumed by sectors whose output is measured in dollars.  Likewise, industries which produce physical output consume commodities measured in dollars.  An approximation is required to allocate metal content across the products produced by the sector.  The most straightforward method is to allocate metal in proportion to the dollar value of sectoral output.  This allocation method can be problematic when a sector produces very different products with different values.  This allocation method can also be problematic when consumption mix differs across the products included in a single commodity sector.  For example, the primary nonferrous metal, except copper and aluminum includes a host of metals.  Certain sectors consume only one of these metals.  Consequently, allocating the use of a specific metal such as cadmium according to the consumption mix of primary nonferrous metals, except copper and aluminum could yield results indicating consumption of cadmium by sectors in which it is not used.  To correct for this problem, the downstream requirements for cadmium, lead, nickel, and zinc commodities have been modified to account for differences between their consumption mix and that of the IO 1997 commodity to which they are most closely related.  

We would like to understand how the level of detail impacts model results.  In the summary-level, exploratory version of the MUIO-LCA model physical flows for cadmium and lead were linked to a 12 by 12 sector monetary model of the US economy.  By replacing the 12 by 12 sector monetary model with the 500 by 500 1997 Benchmark Accounts the resolution of the model was significantly increased.  In Figure 2 the supply chain consumption of lead in lead-acid batteries associated with a 20 thousand dollar final demand for manufacturing output in the 12 by 12 summary-level MUIO-LCA model are compared to the supply chain consumption of lead in lead-acid batteries associated with a 20 thousand dollar final demand in various manufacturing sectors in the detailed MUIO-LCA model.
[Figure 2]

We can see that increasing the level of detail provides beneficial information to the degree in which individual sectors vary from the weighted average.  For example, the 12.6 kilogram supply chain consumption of lead in lead-acid batteries associated with a 20 thousand dollar final demand for automobile and light truck manufacturing is surprisingly similar to the 12.4 kilograms result obtained by applying the same final demand to the general manufacturing sector in the summary-level model.  However, certain sectors differ significantly from the average.  Glass container manufacturing consumes only 0.6 kilograms of lead in lead-acid batteries for each 20 thousand dollars in final demand.  The smallest supply chain consumption associated with a 20 thousand dollar final demand in a manufacturing sector is reported for software reproducing which consumes only 0.26 kilograms of lead in lead-acid batteries while the largest consumption is reported for power-driven handtool manufacturing which consumes 250 kilograms of lead in lead-acid batteries for the same final demand.  The supply chain consumption intensity of lead in lead-acid batteries by breakfast cereal manufacturing is very near the average rate for manufacturing sectors of 0.21 grams per dollar.  The supply chain of breakfast cereal manufacturing consumes 4.1 kilograms of lead in lead-acid batteries for each 20 thousand dollars increase in final demand.  Notice the difference between the average rate of consumption for sectors in the 500 sector model (0.21 g/$) and the output weighted average represented in the summary-level model (0.62 g/$).  

It is interesting but perhaps not surprising that the result for automobile and light truck manufacturing is so near the result for the general manufacturing sector in the summary-level model.  The total commodity output of automobile and light truck manufacturing is 200 billion dollars representing 5.4 percent of the total commodity output of US manufacturing (BEA '02).  Automobile and light truck manufacturing consumes the output of 321 other monetary commodities directly (BEA '02).  Its supply chain includes 447 of the 491 industries included in the 1997 Benchmark Accounts (BEA '02).  For each dollar of additional final demand for automobile and light truck manufacturing, $2.88 of transactions occur and $0.97 value added is generated throughout the supply chain (GDI '07).  It is not surprising that the supply chain consumption of lead in lead-acid batteries by automobile and light truck manufacturing sector in the detailed model is nearly the same as average consumption represented by  manufacturing in the summary-level model since it’s supply chain includes such a large portion of the economy.  Despite the similarity in the overall result, the detailed model allows the user to specifically determine the sectors that contribute most heavily to supply chain use of materials.

Clearly aggregation of the production of multiple commodities into a single industry or process category in an IO model introduces uncertainty to model results.  In choosing the level of detail for an IO model a tradeoff is made between distinguishing between distinct products and processes and blurring the lines between industries.   Often multiple products are produced by a single facility.  Disentangling the dollar transactions, material flows, and labor costs associated with each requires making somewhat arbitrary decisions about the factors associated with each product.  In an ideal IO table each industry would produce only one output.  Make and use accounts have been developed to more accurately reflect the reality of firms/sectors which produce a number of commodities.  Even in these models it is preferable to define sectors such that most of each industries’ output is its’ primary commodity.  
In Figure 3 and Figure 4 we present the cumulative distribution of industries based on the fraction of their primary commodity produced or consumed.  In other words, each point in the figure represents the ratio of the matching product (MP), the value at the intersection of a sector with itself in the make or use table, by the total industry output (TIO) or total commodity output (TCO).  
Entries from the make table were used to calculate the percentage of total output produced by the primary industry.  Entries from the use table were used to calculate the percentage of total output consumed by the primary industry.  Ideally the percentage of total output produced by the primary industry would be 100%.  A 100% MP / TIO ratio indicates the industry produces no other commodity.  A 100% MP / TCO ratio indicates no other industry produces the same commodity.  We would also expect the percentage of total output consumed by the primary industry to be small.  Of course a non-zero percentage is expected in certain cases.  For example, the electrical utilities industry would be expected to consume a small amount of electricity.  However, in other instances the size of the percentage of total output consumed by the primary industry is an indicator of aggregation.  For example, we would expect the percentage of direct consumption of motor vehicle bodies by the sector which manufactures them to be very small.  In fact it consumes 18% of the total commodity output.  Other sectors which consume high percentages of their own primary output include: primary smelting and refining of copper (53%); motion picture and video industries (32%); sugar manufacturing (28%); rendering and meat byproduct processing (16%); leather and hide tanning and finishing (24%); aircraft engine and engine parts manufacturing (26%); and cattle ranching and farming (23%).  
We would expect self-consumption of a commodity by its primary producing industry to decrease as the number of sectors in the model increase.  However, we would also expect the production of secondary products to increase as well.  This effect is demonstrated for the US Benchmark Model by comparing Figure 3 and Figure 4.  In the cumulative distribution for the 500 sector model presented in Figure 3 we observe only a small amount of self-consumption, 90% of sectors consume less than 10% of the total commodity output of their primary commodity.  In Figure 4 we see that only roughly 60% of sectors in the summary-level, 12-sector model consume less than 10% of the total commodity output.  However, only roughly 20% of sectors in the 12-sector model produce less than 95% primary commodity output compared to 55% of the sectors in the 500 sector model.  Thus we can see that as we aggregate commodities and industries production of secondary products decreases while self-consumption increases. 
[Figure 3]

[Figure 4]

Uncertainty Associated with Using US Geological Survey Commodity Flow Data to Create the MUIO-LCA Model
The flows of cadmium, lead, nickel and zinc used to create physical flow sectors in the MUIO-LCA model are based primarily on data collected by the US Geological Survey (USGS 06, 05).  The USGS derives the values from a variety of sources including the US  Economic Census (USCB '02a, b, c), US Foreign Trade Database (US DoC '99), World Metal Statistics (WBMS '07), Platt’s Metals Weekly (Platts '07), American Metal Market (AMM '07), Metal Bulletin (MB '07), the London Metal Exchange (LME '07), and trade groups 
 ADDIN EN.CITE 
(ICDA '07, ILZSG '07, IZA '07, LDAI '07)
.  USGS attention to a wide variety of sources provides a measure of confidence that data are accurate.  Despite the numerous sources certain data remain unobtainable.  In cases where very few firms are involved the USGS withholds data to protect proprietary information.  In other cases the source of data on which an estimate is based is unclear.  For example, estimates of the end-uses for cadmium are based on the expert opinion of Hugh Morrow, International Cadmium Association President (USGS '05).  Data obtained from the Economic Census, Commodity Flow Survey, or Foreign Trade Database are subject to inaccurate reporting, estimation uncertainty, missing information, and unbalanced flows.  

Systematic errors are introduced to USGS data through price, concentrations of metal in commodities, and mass balance calculations.  In most cases USGS surveys companies for their material production in mass units.  In certain cases masses are estimated using dollar values and price.  In other cases we or the USGS estimate the mass of metal or mineral in a compound flow such as ore concentrates using a concentration with associated uncertainty.  For example, estimates of cadmium content of zinc ore concentrate range from 0.1 to 0.8 percent 
 ADDIN EN.CITE 
(Brunner P '04, Fthenakis '04, GCA '81, James '00, Plachy '01)
.  Some values reported by USGS are calculated by mass balance.  Apparent consumption is calculated by adding all sources, such as domestic production, imports, releases from stockpiles, and subtracting uses other than consumption.  The error associated with each flow used in the mass balance is passed on.  In some cases USGS publishes two estimates derived from different sources.  

The USGS data does not provide a complete description of the path followed by a material from ore to the consumer.  The best data is related to metal commodities early in their life cycle.  USGS regularly tracks ore, refined metal, certain metal compounds, and scrap materials.  For the most widely used metals mine production, primary production, secondary production, imports, exports, stocks, and domestic consumption are provided.  While these data are useful, they fall short of the complete life cycle information we would like to have available for LCA of products.  

Some guidance is also provided related to the end use of these metals.  However the categories do not always relate to familiar products, end use data are often less certain, and the paths followed by materials from early in their life cycle to the end use in products are not described.  For example, USGS end uses of zinc include galvanizing, zinc-based alloys, brass and bronze, and other.  These do not describe products purchased directly by consumers.  If we want to quantify the amount of zinc in a product we would need to understand the amount of each of these materials in the product.  The processes involved in zinc flows between ore and end use are also left unclear.

Lack of detail in USGS data causes problems for those seeking to estimate consumption of materials in complex products.  Apparent consumption is usually calculated using flows of refined metal.  However, the flow of material contained in products is sometimes equal to or greater than domestic production.  Little data are available relating to the material content of imported products.  While the dollar values of product imports could be used to estimate material content, such an estimation would be time consuming and subject to a high degree of uncertainty.  Determining the product mix included in a category of imports, allocating dollar values, and estimating prices each contribute to the complexity of this task and the uncertainty of the estimates (Biviano '99).

Domestic Production vs. Imports

Analyses performed using the 1997 Benchmark Account (or any national level input-output account) assume that the technology mix for the production of imports is the same as the technology mix for domestic production.  In other words, the economic activity associated with the production of a good is assumed to be the same regardless of where the good is produced.  Differences between the supply chain of a product produced outside the US and the supply chain of the same product produced in the US is not reflected in model results.  For industries which utilize similar technologies the error caused by assuming the domestic technology mix for imports is minimal.  However, in cases where technologies, energy sources, or environmental priorities differ, assuming domestic production of imports can significantly under or over estimate economic and environmental impacts.  In addition, differences in the transportation modes and distances for imported goods are also neglected in most IO-LCA models.  The implications of international trade on the environmental impacts of consumption has been the focus of several recent studies 
 ADDIN EN.CITE 
(Peters '04, '05, '06, Weber '07)
.  Uncertainty arising from the imports assumption is also discussed by Lenzen ('01).
Here we will focus on the relative uncertainty caused by the flow of metals as imports into the US economy.  The US is one of the largest consumers of metals in the world.  As the global economy has developed the US has become increasingly dependent upon imported metal commodities.  Continually rising demand and limited domestic supply causes US industry to look to the global market to meet demand for primary metal at a reasonable cost.  In addition, the number of metals consumed in products is increasing (Johnson '07).  Diversification of material requirements has required companies to look outside US borders for metals which are not abundant in the US  A number of other factors increase the attractiveness of imported metals.  The most important of these is lower labor costs.  Less stringent safety and environmental standards could also drive increases in metal imports to the US.  

Applying the domestic structure to imports introduces three main sources of uncertainty to model results.  First the prices of goods and services exchanged throughout the supply chains of imported products are assumed to be the same as those exchanged throughout the supply chain of a domestically produced product.  Second the technology mixes throughout the supply chain of imported products are assumed to be the same as the technology mixes of the comparable US supply chain.  Third the relative environmental impacts of production elsewhere are assumed to be same as those in the US  As a first order approximation these assumptions may not be too bad.  However, it is desirable to correct for these problems if possible.  The MUIO-LCA model corrects for some of the error associated with price differences.  Because flows in the MUIO-LCA model are tracked in physical quantities differences in price do not change the multipliers in the direct and total requirements matrices.  If the technology mix and the environmental controls are similar for imported and domestically produced goods MUIO-LCA accurately represents the economic and environmental impacts.   

Uncertainty associated with heavily imported goods is greater than uncertainty associated with domestically produced goods.  Guidance relating to uncertainty in the results of the MUIO-LCA model and use factors is provided by categorizing metal commodities according to US import reliance and rate of change of imports. Net import reliance and general trends for imports can be found in Table 2.  Net import reliance as a percentage of consumption is calculated by the USGS as imports minus exports plus an adjustment for stock changes (+ for releases, - for accumulation) divided by apparent consumption.  Trends for imports are determined by inspection of graphs based on USGS historical mineral statistics (Kelly '07).

[Table 2]

Multipliers
Often vectors of multipliers are used in combination with the results of an IO model to calculate an inventory of impacts.  Generally vectors consist of an amount of impact per unit output of an industry or commodity (Matthews '92).  Impact vectors are used together with the MUIO-LCA model to calculate value added, fossil energy consumption, global warming and criteria pollutant emissions, toxic releases, work-related injuries, and material use.  Here we will discuss the uncertainties associated with the vectors used to calculate toxic releases and material consumption. 
Toxics Release Inventory

An important and somewhat controversial data source used in the EIO-LCA and MUIO-LCA models is the US EPA Toxics Release Inventory (TRI).   The TRI is important because it is the most comprehensive source of environmental release data that exists for the US  (and possibly worldwide).  It is controversial because its values are self-reported by facilities, subject to minimum reporting thresholds, and often calculated using approximations based on mass balances and emissions factors.  Uncertainty in the TRI data arises from omissions such as sectors which are not required to report, facilities that fall below the reporting threshold or facilities for which forms are not filed; approximations made in the calculation of releases; and incorrectly reported or recorded values.  Using the TRI data to create vectors for use with the EIO-LCA and MUIO-LCA models introduces other uncertainties arising from heterogeneity of processes and releases amongst the facilities grouped in a sector; assumptions made in the bridging between SIC sector definitions used in the TRI and the US Benchmark IO sectors used in the EIO-LCA and MUIO-LCA models; lack of knowledge about the distribution of compounds within TRI chemical groupings (such as chromium compounds); and changes in the level of production and environmental releases reported from year to year.  The application of these factors to calculate an inventory assumes that either releases are relatively constant across levels of production or that only marginal changes in consumption patterns are being modeled.  If release rates are constant across levels of production our model can be used in a wider range of circumstances.  
Bridge Uncertainty
Facilities are listed in the TRI by primary Standard Industrial Classification (SIC) code as well as up to five additional SIC codes under which their processes could be classified.  In 1997 the BEA adopted the NAIC system for classifying industries in its input-output tables.  In order to relate the releases found in the TRI to the input-output accounts Cicas ('05) devised a mapping based on guidance provided by the BEA.  The final form of the US Benchmark IO accounts is redefined slightly from the NAICS system to associate a higher fraction of commodity production with the primary industry.  To create multiplier vectors facility-level TRI data are aggregated by SIC code, bridged from SIC to NAICS, and bridged from NAICS to the US Benchmark coding system.  The bridges between the SIC and US Benchmark coding systems are created based on the value of output from each sector.  Error is introduced by the allocation of toxic releases by economic value rather than by the associated product output, incorrectly reported codes, and difference between coding systems.
A simple test of the bridge revealed that although the amount of TRI releases we are unable to map is rather high (~10%) in the early years of the TRI (prior to 1990), amounts in more recent years is small enough to be ignored in most instances (~0.2-0.3%).  There are two dominant reasons the TRI data cannot be bridged between the SIC and US Benchmark coding systems.  The first, is facilities reporting under incorrect SIC codes or SIC codes which have since been discontinued and are therefore not included in the SIC to NAICS bridge.  This source of error dominates for vectors based on older TRI data, 1987-1996.  The second cause of is facilities reporting to sectors for which there is no related sector in the US Benchmark coding system.  This second cause of error plays a greater role in bridging error for more recent TRI data as the first source of error becomes negligibly small.  For example, there is no equivalent of the NAICS sectors associated with public administration (92*) in the US Benchmark system.
Variability Over Time

Because the TRI data and the gross output by industry are both published annually it is possible to calculate and compare a series of annual toxics release factors.  We did this for the period 1998 – 2004.  Although TRI data have been collected since 1987, changes made to the TRI reporting requirements which took effect in 1998 prevent comparison to values collected before 1998 (US EPA '06).  Annual TRI databases include roughly 500 chemicals released by 25,000 facilities reporting in 500 SIC codes which comprise about 90,000 rows of data in all.  Release factors were calculated by aggregating TRI data by SIC code, chemical, and release category; mapping from SIC code to 1997 Benchmark code; and dividing by the corresponding industry gross output value.  For a given industry, chemical, and release category, we would expect the release factor to remain rather constant over time.  Provided production in a sector is split across a sufficiently large number of facilities, changes in technology will take place gradually and trends in releases per dollar will be smooth and gradual over time.  Large fluctuations in a release factor across years indicates a high degree of uncertainty.

Although the TRI is the most comprehensive set of environmental release data available for the US, release factors calculated from its data have a high degree of uncertainty.  The ratio of standard deviation to mean for the release factor (kg/$) by 6-digit 1997 Benchmark code and release category over the period 1998-2004 range from 3% to 264%.  Taken as a whole, the release factors for the manufacturing sectors show a smaller amount of fluctuation over time than those for other sectors of the economy.  In general, release factors for air releases are the most reliable.  The average ratio of standard deviation to mean for air releases from the manufacturing sectors is roughly 0.5.  Factors for transfers off-site to disposal and transfers off-site to further waste management are also relatively consistent across years.  Release factors for on-site land and surface water releases are generally the least consistent across years.
Below Threshold Releases

Although the TRI data are very comprehensive, there are many facilities which do not report.  Manufacturing facilities (SIC 20-39) with 10 or more full time equivalent employees that manufactures or processes more than 25,000 lbs or that uses more than 10,000 lbs of a listed chemical are required to report.  Estimates of toxic releases based on the TRI factors systematically underestimate due to excluded releases.  Bennear ('06) provides a helpful discussion of the usefulness of TRI data and problems associated with its incompleteness.  In Table 3 we present a comparison between the number of facilities reporting to the 2002 TRI and the number estimated by the 2002 Economic Census.  In general the TRI includes only a small fraction of the number of facilities estimated by the Economic Census.  The 2002 TRI includes reports for 24,000 facilities while the Economic Census estimates 350,000 establishments in the manufacturing sectors.  The best coverage by the TRI appears to be in the 32* manufacturing sectors where the number of facilities reporting to the TRI is 10% of the total number estimated by the Economic Census.
[Table 3]

Use Factors

A second example of a multiplier used together with the MUIO-LCA model is the use factors.  USGS data are used to determine the material outputs of roughly 100 metals and minerals.  We calculate use factors for these metals and minerals by dividing the total 1997 flow of each by the total commodity output of the corresponding commodity sector.  Uncertainty in these use factors was estimated by calculating them in several ways.  The data used to perform these calculations are subject to the uncertainties previously described.  Calculating use factors over a period of years or in two different ways does allow us to identify certain systematic errors in the USGS data.
The relationship between production and total commodity output and the relationship between apparent consumption and total intermediate demand can be used to calculate two different material flow per dollar ratios.  These ratios will be referred to as the consumption factor (1) and the production factor (2).
	Consumption Factor:  
	Fconsumption = UApp / (q – e)
	(1)



	Production Factor:
	Fproduction = PTotal / q
	(2)




where:

UApp is the Apparent Consumption of the Physical Commodity in tonnes

PTotal is the Total Production of the Physical Commodity in tonnes

q is Total Commodity Output, the row sum of Use Table (incl. final demand).

e is the total Final Demand, row sum of the Final Demand sectors from the Use Table

q – e is the Total Intermediate Demand, row sum of the Use table (not incl. final demand).
Production factors were calculated for each of the years 1997 to 2004.  Variation across years provides an indication of uncertainty in the data upon which the calculation is based.  The use factors based on apparent consumption are also calculated for comparison to the production factors.  Because intermediate demand values are only available for 1997, the consumption factor is only calculated for that year.  
Calculating the material use factors using these two methods provides opportunities to identify several types of error or uncertainty.  A large difference between the consumption factor and the production factors is a strong indication of systematic error in the USGS data.  In cases where a large portion of the material is imported, it is not possible to calculate a production factor.  When a high percentage of the material is imported, more confidence should be placed on the consumption factor than the production factors.  A detailed discussion of the results of our use factor uncertainty analysis can be found in Hawkins ('07). 
Monte Carlo Analysis

Despite the long history of economic input-output analysis (Leontief '36, Rose '89), little guidance is available for the user of an input-output model who wishes to quantify the range of uncertainty in their results.  No published material directly addressing uncertainty in the Benchmark Accounts is available from the BEA (Bailey '04).  McMichael and Fishbeck ('06a) advise EIO-LCA model users to take care when reporting more than two significant figures, even though direct and total requirements are reported to six significant figures.  

Because input-output models involve large amounts of data and many potential sources of uncertainty it is difficult to quantify the overall effect on model results.  While a comprehensive sensitivity analysis for each variable involved is desirable, heavy data burdens make this infeasible.  In the past, Monte Carlo simulation methods have been used to perform estimates of uncertainty.  Early analyses of uncertainty in input-output models were performed by Quandt ('58) who calculated the variance and confidence intervals for the coefficients in small input-output systems.  McMichael and Fishbeck ('06b) perform a similar Monte Carlo analysis on a small IO system to provide guidance for error treatment in the EIO-LCA model.  Additional Monte Carlo analyses of input-output models have been performed by Bullard ('88), Lenzen ('01), and Peters ('07).  

The MUIO-LCA make and use tables include a total of 550,000 data points, 83,000 of which are non-zero.  The monetary portion of these tables are based on the 1997 Benchmark Accounts for which little guidance about uncertainty is available (Streitwieser '06).  A number of operations are performed in integrating material flow data provided by the USGS with the monetary tables.  An analysis of uncertainty in model results in an IO-LCA model such as the EIO-LCA or MUIO-LCA requires a streamlined method.  Monte Carlo simulation is a flexible tool for performing uncertainty analysis of IO models.  Conservative estimates of uncertainty in model parameters coupled with distributions which reflect current understanding of the parameters can be used to scope the contributions of various parameters to overall model uncertainty.  As the most influential parameters are identified additional work can be done to better understand their uncertainty distributions.

The large amount of data involved presents a challenge for Monte Carlo analysis, however in our experience it was possible to perform simulations with a common PC involving 1,000 trials by drawing values for each non-zero entry in the MUIO-LCA make and use tables from a uniform distribution.  The requirement that the row and column sums of the make and use tables yield the same total industry and commodity outputs presented a challenge in our experience.  We found we were discarding a large number of the runs when we selected runs based on total output agreement within a given tolerance.  Certain entries in the make and use table played an important role in balancing the tables.  Random draws outside of a small range for these values greatly disrupted the balance of the tables.  However, accepting that the uncertainty in these values is actually less than expected may not be too unreasonable.  Often these values are larger entries which are more likely to be based on a larger number of surveys or surveys from larger companies which are less likely to report erroneously.  They also have a greater impact on total industry output and total commodity output and have received more scrutiny from the US BEA and other agencies.

Monte Carlo simulations of the IO-LCA models would benefit from the use of an algorithm that accounts for joint variation of entries in the make and use table.  For example, in order to balance the tables an increase in consumption of a material in the use table should be tied to an increase in domestic production of that material in the make table or changes in final demand (increased imports or decreased exports).  More sophisticated analyses would also simulate values earlier in the determination of the make and use tables.  By doing this the uncertainty could be propagated through all of the calculations involved in the determination of the model results.

Uncertainty, Useability, and Documentation
The usefulness of IO models for LCA, MFA, and industrial ecology research has been and continues to be demonstrated.  As the user-base for IO models widens to include more researchers from other fields who are not familiar with the nuances of IO modeling, communicating the proper use as well as the limitations and uncertainties of IO models becomes increasingly important.  IO models involve large amounts of data often from a wide variety of sources.  A number of assumptions and simplifications are made in their construction.  Nonetheless, IO models can be made very user friendly.  Ensuring that the models are used properly and that appropriate conclusions are drawn from their results requires improved understanding of uncertainty and effective communication between model creators and users.  Efforts to make models more accessible to the general public may have the unwanted effect of increasing error or misinterpretation of model results.  This can be minimized through prompting model users with information about proper model use and interpretation as well as the provision of clear, easily-interpreted, and navigable documentation. 
Conclusion
We have provided a discussion of error in IO-LCA models based on our experience with the development of the MUIO-LCA model.  The MUIO-LCA model extends the EIO-LCA model through the addition of sectors to track physical flows of cadmium, lead, nickel, and zinc.  The MUIO-LCA model demonstrates how IO-LCA models can be improved by tracking flows of commodities in terms of units of output more appropriate to environmental analysis.  

We provide an overview of sources of error in IO-LCA models and an in depth discussion of issues related to aggregation, source data, imports, and multipliers used in the MUIO-LCA model.  We find that as the number of sectors in our model is increased our ability to specify the output of a sector improves while production of secondary products increases.  Uncertainty in metal flow data provided by the USGS is described.  Increased uncertainty associated with imports of metals is described and guidance is provided relating to the uncertainty associated with IO results for the most important metals.

The calculation of toxic release factors from the EPA Toxics Release Inventory is described together with a number of sources of uncertainty involved.  These included uncertainties and error associated with bridging between SIC and the Benchmark coding systems and the TRI reporting thresholds.  Comparison of release factors across years is suggested as a method for quantifying uncertainty in multipliers.  The number of facilities reporting to the TRI was compared to the number estimated by the US Economic Census.  It was found that the TRI includes only a small fraction of facilities, 10% or less for the manufacturing sectors which are the focus of the TRI.  

Calculation of use factors using USGS data is also discussed.  By calculating use factors based on production over a range of years and based on consumption we can better understand the uncertainty in their results.  

Finally a case was made that Monte Carlo analysis offers significant benefits for quantifying the uncertainty in IO models due to its ability to handle simultaneous variation of many model inputs and the ease of implementation.  Over time the most important model inputs could be better characterized.

Improving our understanding of the uncertainty in IO-LCA models is crucial to their acceptance amongst policy-makers.  As the user base widens it is also important to improve model usability and documentation.  Understanding and reducing uncertainties in IO-LCA models will improve agreement between the results of different studies which will lead to greater acceptance of their results by decision-makers. 
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Table 1.  Overview of Error in Input-Output Life-Cycle Analysis Models.

	Source of Error
	Description

	Source data uncertainty 
	Uncertainty arising from the estimation of elements of the IO accounts based regression of standard errors of survey data.

	Estimation of transactions
	Certain industries included in an IO account are not surveyed directly and therefore transactions must be calculated based on total expenditures.  Make table production and use table supply chains are adjusted to increase correlation between primary industries and commodities.  Finally entries in the make and use tables are adjusted to balance the total output values.

	Allocation uncertainty
	When an industry produces multiple products a portion of revenue and expenditures must be allocated to each.  Environmental impacts and material use must also be allocated across products.  Often it is unclear how these allocations should be performed.

	Proportionality assumption uncertainty
	Uncertainty due to the assumption that unit flows of commodities represented by monetary transactions are the same for all industries.  Proportionality uncertainty also arises from the assumption that effects respond linearly to changes in the production level.

	Gate-to-grave truncation error
	Most IO LCA models only consider requirements and impacts due to the production of goods and services while not providing guidance related to use, maintenance, decommissioning, demolition, disposal or recycling.

	Changes in technology or production mix over time
	New technologies, new processes, or changes in production level leading to gain or loss of economies of scale would each change the structure of the direct and indirect requirements matrices and lead to different model results.  Generally the time elapsed between the US  Economic Census and the BEA  release of input-output tables is 5 years.

	Model input uncertainty
	Uncertainty introduced in the selection of final demand sector, value of functional unit, value of margins, and delivery costs.

	Aggregation uncertainty
	Uncertainty due to firms of various sizes utilizing different processes or technology mixes included in the same sector.

	Imports assumption uncertainty
	Uncertainty arising from the assumption that imported commodities are produced using a technology mix identical to that observed in the economy for which the account is being created.  A second (less important) source of uncertainty arises from the assumption that each foreign industry produces only one commodity type.

	Multiplier Uncertainty
	Direct and total output results from IO-LCA models are often multiplied by vectors representing impact per unit output.  The datasets used to create these multipliers each involve their own uncertainties.  Harmonizing between coding systems and data types also introduces error.


Table 2.  Import Reliance and Trends for Metal Commodities in 2006.
	Metal Commodity
	Net Import Reliance, Percent of Consumption (USGS '07)
	Imports Increasing (+), Decreasing (-), No trend (~)

	Aluminum
	44
	+

	Antimony
	88
	~

	Arsenic
	100
	-

	Bauxite & Alumina
	100
	~

	Beryllium
	Net exporter
	~

	Bismuth
	96
	+

	Boron
	Net exporter
	

	Cadmium
	29
	~

	Cesium
	100
	*

	Chromium
	75
	~

	Cobalt
	81
	+

	Columbium
	100
	*

	Copper
	40
	+

	Gallium
	99
	*

	Germanium
	~902
	*

	Gold
	Net exporter
	+

	Indium
	100
	*

	Iron Ore
	5
	~

	Iron oxide pigments
	*
	+

	Iron & Steel
	21
	+

	Lead
	2
	~

	Lithium
	>50
	*

	Magnesium Compounds
	53
	+

	Magnesium Metal
	54
	+

	Manganese
	100
	~

	Mercury
	Net exporter
	-

	Molybdenum
	Net exporter
	+

	Nickel
	60
	~

	Platinum group metals:

-Platinum

-Palladium
	95

82
	+

	Rare earths
	100
	+

	Rhenium
	87
	*

	Rubidium
	1008
	*

	Scandium
	100
	*

	Selenium
	*
	*

	Silver
	65
	~

	Strontium
	100
	-

	Tantalum
	87
	*

	Tellurium
	*
	*

	Thallium
	100
	*

	Thorium
	100
	*

	Tin
	79
	~

	Titanium mineral concentrate
	71
	+

	Titanium & titanium dioxide
	Net exporter
	+

	Tungsten
	66
	+

	Vanadium
	100
	+

	Yttrium
	100
	*

	Zinc
	766, 637 
	+

	Zirconium
	Net exporter
	*


*Data not available.
1Estimated (Hawkins '06).

2Estimated based on USGS values.

3Estimated.  Total consumption of steel scrap & slag divided by apparent consumption of iron & steel (excl. semi-finished steel products).

5Secondary production from old scrap divided by apparent consumption.

6Refined zinc only.

7All forms of zinc.

8Primarily imported from Canada

Table 3.  Comparison of number of facilities represented in the US EPA Toxics Release Inventory and the 2002 Economic Census of the US.

	Two-digit NAICS Code
	No. of Facilities
	TRI Coverage

	
	TRI
	Census
	

	21
	Mining
	250
	24,000
	1.0%

	22
	Utilities
	700
	17,000
	4.2%

	23
	Construction
	7
	700,000
	0.001%

	31
	Manufacturing: Food, beverage, tobacco, textile, apparel, and leather products
	2,200
	46,000
	4.9%

	32
	Manufacturing: Wood product, paper, printing, petroleum, coal, chemical, plastics, rubber, and non-metallic minerals
	9,000
	90,000
	10%

	33
	Manufacturing: Metal, machinery, computer, electronic, electrical, appliance, transportation, furniture, and misc.
	11,000
	140,000
	7.5%
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Figure 1.  Dependency of uncertainty on level of detail.
[image: image2.emf]0.26

0.56

4.1

12

13

250

0.001 0.1 10

Software reproducing

Glass container mfg

Breakfast cereal mfg

Summary MUIO-LCA, Manufacturing

Auto. & lt. truck mfg

Power-driven handtool mfg

Supply Chain Use of Pb in Pb-Acid Batteries, kg


Figure 2.  Effect of increasing level of detail in the manufacturing sector.
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Figure 3.  Distribution of 1997 US Benchmark Input-Output Sectors by percentage of primary commodity output produced and consumed by the corresponding industry.
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Figure 4.  Distribution of 1997 US Benchmark Input-Output Sectors by percentage of primary commodity output produced and consumed by the corresponding industry, 12 sector summary model.
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